edexcei

Mark Scheme (Results)

June 2011

GCE Statistics S4 (6686) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028843
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- \mathbf{M} marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- i The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

June 2011

Statistics S4 6686

Mark Scheme

Question Number	Scheme	Marks
1.	$\mathrm{P}\left(F_{8,10}>3.07\right)=0.05$ So need $\mathrm{P}\left(F_{10,8}>x\right)=0.01$ So $a=\frac{1}{5.81}=\underline{\mathbf{0 . 1 7 2}}$ awrt_ 0.172	B1 B1
2.	$\begin{aligned} & s_{p}{ }^{2}=\frac{6 s_{x}{ }^{2}+3 s_{y}{ }^{2}}{9} \quad(=192.03 \ldots) \\ & 1.735<\frac{9 s_{p}{ }^{2}}{\sigma^{2}}<23.589 \end{aligned}$ So 99% confidence interval is $(73.26 \ldots ., 996.14 \ldots$) awrt (73.3, $\underline{996}$	M1 B1M1B1 A1
Notes:	$\begin{array}{ll} 1^{\text {st }} \mathrm{M} 1 & \text { for attempting } s_{p}{ }^{2} \\ 1^{\text {st }} \mathrm{B} 1 & \text { for } 1.735 \text { (or better) } \\ 2^{\text {nd }} \mathrm{M} 1 & \text { for use of } \frac{9 s_{p}{ }^{2}}{\sigma^{2}}, \text { follow through their } s_{p}{ }^{2} \\ 2^{\text {nd }} \mathrm{B} 1 & \text { for } 23.589 \text { (or better) } \\ \text { A1 } & \text { for both values correct to awrt } 3 \text { sf } \end{array}$	

Question Number	Scheme	Marks
3.	$\begin{aligned} & d=B-A: 1,2,3,-1,3,-1,-2,2 \\ & \bar{d}=0.875 \\ & s_{d}^{2}=\frac{33-8 \times 0.875^{2}}{7}=(3.8392 \ldots) \\ & \mathrm{H}_{0}: \mu_{d}=0 \quad \mathrm{H}_{1}: \mu_{d}>0 \\ & t_{7}=\frac{0.875}{\frac{s_{p}}{\sqrt{8}}}=1.263 \ldots \text { awrt } \underline{\mathbf{1 . 2 6}} \end{aligned}$ $t_{7}(10 \%)$ one tail critical value is $\underline{\mathbf{1 . 4 1 5}}$ Not significant. There is insufficient evidence to support the claim of manufacturer B or machine B does not produce more juice (than machine A) $1^{\text {st }}$ M1 for attempting the $d \mathrm{~s}$ $2^{\text {nd }}$ M1 for attempting \bar{d} $3^{\text {rd }} \mathrm{M} 1$ for attempting s_{d} or $s_{d}{ }^{2}$ $4^{\text {th }} \mathrm{M} 1$ for attempting the correct test statistic $3^{\text {rd }}$ A1 contextual statement only required. Allow The juice provided by machine A is the same as by machine B NB 2 sample test can score 3/8 M0 M0 $\text { M1 } \frac{7 \times 9.27+7 \times 16.79}{14}$ B 1 for $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}} \quad \mathrm{H}_{1}: \mu_{\mathrm{A}}<\mu_{\mathrm{B}}$ M0 A0 B1 1.345 A0	M1 M1 M1 B1 M1A1 B1 A1 8

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & s_{x}^{2}=\frac{1559691-6 \times\left(\frac{3059}{6}\right)^{2}}{5}=22.1666 \ldots \\ & \mathrm{H}_{0}: \sigma_{x}^{2}=\sigma_{y}^{2} \quad \mathrm{H}:{\sigma_{x}}^{2} \neq \sigma_{y}^{2} \\ & \frac{s_{x}^{2}}{s_{y}^{2}}=1.895 \ldots \\ & F_{5,4}=6.26 \end{aligned}$ $\frac{s_{x}{ }^{2}}{s_{y}{ }^{2}}=1.895 \ldots$. awrt $\underline{1.90}$ and comment : not significant - variances of weights of the two boxes can be assumed equal.	M1 B1 M1 B1 A1 (5)
(b)	$\begin{aligned} & \bar{x}=509.833 \ldots \quad \Rightarrow \quad \bar{x}-\bar{y}=5.03333 \\ & s_{p}{ }^{2}=\frac{5 s_{x}{ }^{2}+4 s_{y}{ }^{2}}{9}=17.513 \ldots \end{aligned}$ 17.5 5% two tail t value is $t_{9}=1.833$ 90% confidence interval is $5.03 \ldots \pm 1.833 \times \sqrt{17.513 \ldots} \times \sqrt{\frac{1}{6}+\frac{1}{5}}$ awrt (0.388, 9.68)	M1 M1A1 B1 M1 A1, A1
(c)	Zero is not in CI, there is evidence to reject the manufacturer's claim Or the weight of the contents of the boxes has changed.	B1ft, B1ft (2) 14
Notes: (a) (b)	$1^{\text {st }} \mathrm{M} 1$ for use of the correct formula for $s_{x}{ }^{2}$ with reasonable attempt at $\sum x^{2}$ and $\sum x$ $2^{\text {nd }}$ M1 for use of the correct test statistic. Allow use of 3.42 instead of 3.42^{2}. Top must be their variance. $1^{\text {st }}$ M1 for attempting $\bar{x}-\bar{y}$ can follow through their \bar{x} $2^{\text {nd }}$ M1 for attempt to find pooled estimate of variance $3^{\text {rd }} \mathrm{M} 1$ for use of correct formula for CI allow any t value and ft their \bar{x} and s_{p}	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA028843 June 2011

For more information on Edexcel qualifications, please visit

www.edexcel.com/quals
Llywodraeth Cymulliad Cymru
Welsh Assembly Government

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Rewarding Learning

